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Abstract

In this paper, we studied the abstract versions of Korovkin type approximation theorems via
statistical relative A−Summation process in modular spaces for double sequences. Then, we
discuss the results which are obtained by special choice of the scale function and the matrix
sequences and we give an application that shows our results are stronger than studied before.
Finally, we study an extension to non-positive linear operators.
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1 Introduction

The classical Korovkin type theorem deals with the approximation only using test functions that
provides the approximation in whole space[19]. Several authors work on this theorem and this
theorem has been extended with the use of summability methods since they make a non-convergent
sequence convergent (see [1, 11, 14, 15, 31, 34]). One of the most important papers on Korovkin
type approximation theory is [5] in which the authors gave the Korovkin theorem on modular
spaces including as particular cases Lp, Orlicz and Musielak-Orlicz spaces. After their work, many
authors studied Korovkin type theorems on modular spaces (see [4, 7, 16, 17, 28, 29]). Recently,
Yılmaz et al. [36] defined a new type of modular convergence by using the notion of relative uniform
convergence ([9, 23]). Then, Korovkin type theorems have been studied via the statistical version of
this new notion by Demirci and Kolay ([10]) for single sequences and by Demirci and Orhan ([12])
for double sequences. Also, Korovkin-type approximation theorems are studied via A−summation
process in modular spaces (see [13, 18, 28, 30]). In this work, we obtain the abstract versions of the
Korovkin type approximation theorems via statistical relative A−Summation process in modular
spaces for double sequences of positive linear operators. Hence, we changed classical test functions
of Korovkin theorem. In Section 2, we introduce the notations and definitions which are needed
and states the results. The proofs of the main results are given in Section 3. Section 4 gives an
application showing that our results are stronger. Finally, in the last section, we show that the
positivity condition of linear operators in the Korovkin theorems can be relaxed.

2 Preliminaries

For the purposes of the present paper, we begin by recalling the concept of Pringsheim convergence.
A double sequence x = (xmn) is convergent to L in Pringsheim’s sense if, for every ε > 0, there

exists N = N(ε) ∈ N such that |xmn − L| < ε whenever m,n > N and denoted by P − lim
m,n

xmn = L
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(see [33]). A double sequence is bounded if there exists a positive number B such that |xmn| ≤ B
for all (m,n) ∈ N2 = N × N. We note that contrary to the case for single sequences, a convergent
double sequence need not to be bounded.

The concept of statistical convergence for double sequences was introduced and studied by
Moricz [24] and can be reformulated in terms of natural density.

Let S ⊂ N2 be a two-dimensional subset of positive integers and let
Smn = {(k, l) ∈ S : k ≤ m, l ≤ n}. Then the two-dimensional analogue of natural density can
be defined as follows:

δ2(S) := P − lim
m,n

1

mn
|Smn|

if it exists. The number sequence x = (xmn) is statistically convergent to L provided that for every
ε > 0, the set S := Smn(ε) := {k ≤ m, l ≤ n : |xkl − L| ≥ ε} has natural density zero; in that
case we write st2 − lim

m,n
xmn = L. Also, this convergence method was characterized in [24] as given

below:
A double sequence x = (xmn) is statistically convergent to L if and only if there exists a set

S ⊂ N2 such that the natural density of S is 1 and

P − lim
m,n→∞

and (m,n)∈S

xmn = L.

Clearly, a P−convergent double sequence is statistically convergent to the same value but its con-
verse is not always true.

Now we recall the concepts of statistical superior limit and inferior limit for double sequences
have been introduced by Çakan and Altay [8]. For any real double sequence x = (xmn) , the
statistical limit superior of x is

st2 − lim sup
m,n

xmn =

{
supGx, if Gx 6= ∅,
−∞, if Gx = ∅,

where Gx := {C ∈ R : δ2 ({(m,n) : xmn > C}) 6= 0} and ∅ denotes the empty set. It means in
general to be δ2 (Gx) 6= 0 that either δ2 (Gx) > 0 or Gx fails to have the double natural density.
Similarly, the statistical limit inferior of x is

st2 − lim inf
m,n

xmn =

{
inf Fx, if Fx 6= ∅,
∞, if Fx = ∅,

where Fx := {D ∈ R : δ2 ({(m,n) : xmn < D}) 6= 0} . The ordering relation between these concepts
is similiar as in the ordinary superior or inferior limit, i.e.,

st2 − lim inf
m,n

xmn ≤ st2 − lim sup
m,n

xmn.

We recall some notations related to the summability theory.
Let A = [aklmn], k, l,m, n ∈ N, be a four-dimensional infinite matrix. For a given double

sequence x = (xmn) , the A−transform of x, denoted by Ax := ((Ax)kl) , is given by

(Ax)kl =
∑

(m,n)∈N2

aklmnxmn, k, l ∈ N,
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provided the double series converges in Pringsheim’s sense for every (k, l) ∈ N2. We say that a
sequence x is A−summable to L if the A−transform of x exists for all k, l ∈ N and convergent in
the Pringsheim’s sense i.e.,

P − lim
p,q

p∑
m=1

q∑
n=1

aklmnxmn = ykl and P − lim
k,l

ykl = L.

In summability theory, a two-dimensional matrix transformation is called regular if it maps every
convergent sequence in to a convergent sequence with the same limit.

Now let A :=
(
A(i,j)

)
=
(
a
(i,j)
klmn

)
be a sequence of four-dimensional infinite matrices with

non-negative real entries. For a given double sequence of real numbers, x = (xmn) is said to be
A−summable to L if

P − lim
k,l

∑
(m,n)∈N2

a
(i,j)
klmnxmn = L

uniformly in i and j.
If A(i,j) = A, four-dimensional infinite matrix, then A−summability is the A−summability for

four-dimensional infinite matrix. Some results regarding matrix summability method for double
sequences may be found in the papers [32], [35].

Now, we start by giving basic concepts and facts of modular spaces.
Assume that X be a locally compact Hausdorff topological space with a uniform structure

U ⊂ 2X×X that generates the topology of X (see, [21]). Let B be the σ−algebra of all Borel subsets
of X and µ : B → R is a positive σ−finite regular measure. Let L0 (X) be the space of all real valued
µ−measurable functions on X provided with equality almost everywhere, Cb (X) be the space of
all continuous real valued and bounded functions on X and Cc (X) be the subspace of Cb (X) of
all functions with compact support on X. In this case, we say that a functional ρ : L0 (X)→ [0,∞]
is a modular on L0 (X) if it satisfies the following conditions:

(i) ρ (f) = 0 if and only if f = 0 µ−almost everywhere on X,

(ii) ρ (−f) = ρ (f) for every f ∈ L0 (X) ,

(iii) ρ (αf + βg) ≤ ρ (f) + ρ (g) for every f, g ∈ L0 (X) and for any α, β ≥ 0 with α+ β = 1.

A modular ρ is N−quasi convex if there exists a constant N ≥ 1 such that the inequality
ρ (αf + βg) ≤ Nαρ (Nf) +Nβρ (Ng) holds for every f, g ∈ L0 (X) , α, β ≥ 0 with α+ β = 1. Note
that if N = 1, then ρ is called convex. Furthermore, a modular ρ is N−quasi semiconvex if there
exists a constant N ≥ 1 such that ρ (αf) ≤ Nαρ (Nf) holds for every f ∈ L0 (X) and α ∈ (0, 1] .

The modular space Xρ generated by modular ρ, given by

Xρ :=

{
f ∈ L0 (X) : lim

λ→0+
ρ (λf) = 0

}
and the space of the finite elements of Xρ, given by

X∗ρ := {f ∈ Xρ : ρ (λf) <∞ for all λ > 0} .

Also, note that if ρ is N−quasi semiconvex, then the space
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{
f ∈ L0 (X) : ρ (λf) <∞ for some λ > 0

}
coincides with Xρ.

Now we recall the statistical relative modular and strong convergence for double sequences (see
also [12]).

Definition 2.1. Let (fmn) be a double function sequence whose terms belong to Xρ. Then, (fmn)
is said to be statistically relatively modularly convergent to a function f ∈ Xρ if there exists a
function σ(u), called a scale function σ ∈ L0 (X) , |σ(u)| 6= 0 such that

st2 − lim
m,n

ρ

(
λ0

(
fmn − f

σ

))
= 0 for some λ0 > 0.

Also, (fmn) is statistically relatively F−norm convergent (or, statistically relatively strongly con-
vergent) to f iff

st2 − lim
m,n

ρ

(
λ

(
fmn − f

σ

))
= 0 for every λ > 0.

The two notions of convergence are equivalent if and only if the modular satisfies a ∆2−condition,
i.e. there exists a constant M > 0 such that ρ (2f) ≤Mρ (f) for every f ∈ L0 (X) , see [26].

Note that if the scale function is selected a non-zero constant, then statistical modular conver-
gence is the special case of statistical relative modular convergence. Moreover, if σ(u) is bounded,
statistical relative modular convergence implies statistical modular convergence. However, if σ(u)
is unbounded, then statistical relative modular convergence does not imply statistical modular
convergence.

Recently, Orhan and Kolay ([30]) presented A−summation process for double sequences on a
modular space and more recently, Demirci, Orhan and Kolay ([13]) introduced the notion of relative
modular A−summation process for double sequences as follows:

A sequence T := (Tmn) of positive linear operators of D into L0 (X) is called a relative
A−summation process on D if (Tmnf) is relatively A−summable to f (with respect to modular ρ)
for every f ∈ D, i.e.,

P − lim
k,l
ρ

[
λ

(
AT
klijf − f
σ

)]
= 0, uniformly in i, j, for some λ > 0,

where for all k, l, i, j ∈ N, f ∈ D the series

AT
klijf :=

∑
(m,n)∈N2

a
(i,j)
klmnTmnf

are absolutely convergent almost everywhere with respect to Lebesgue measure and we denote
the value of Tmnf at a point u ∈ X by Tmn(f(v);u) or briefly, Tmn(f ;u). It will be observed
that A−summation process is the special case of relative A−summation process in which the scale
function is a non-zero constant.

In this regard, some results on this new convergence method can be obtained by applying some
Korovkin type theorems for double sequences of linear operators on a modular space.

In the present paper, we consider the following assumptions:

� A modular ρ is said to be monotone if ρ(f) ≤ ρ(g) for |f | ≤ |g| .
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� A modular ρ is finite if χA ∈ Xρ whenever A ∈ B with µ (A) <∞.

� A modular ρ is strongly finite if χA ∈ X∗ρ for all A ∈ B such that µ (A) <∞.

� A modular ρ is said to be absolutely continuous if there exists an α > 0 such that, for every
f ∈ L0 (X) with ρ (f) <∞, the following conditions hold:

◦ for each ε > 0 there exists a set A ∈ B such that µ (A) <∞ and ρ
(
αfχX\A

)
≤ ε,

◦ for every ε > 0 there is a δ > 0 with ρ (αfχB) ≤ ε for every B ∈ B with µ (B) < δ.

If a modular ρ is monotone and finite, then C (X) ⊂ Xρ. If ρ is monotone and strongly finite,

then C (X) ⊂ X∗ρ . Also, if ρ is monotone, strongly finite and absolutely continuous, Cc (X) = Xρ

with respect to the modular convergence in the ordinary sense (see [20, 22, 27]).

3 The main results

We now prove some Korovkin type theorems with respect to an abstract finite set of test functions
f0, f1, ..., fq in the sense of statistical relative A−Summation process in modular spaces.

Let T = (Tmn) be a double sequence of positive linear operators from D into L0 (X) with
Cb (X) ⊂ D ⊂ L0 (X) . Let ρ be monotone and finite modular on L0 (X) . Assume further that the
double sequence T, together with modular ρ, satisfies the following property:

there exists a subset XT ⊂ D∩Xρ with Cb (X) ⊂ XT and σ ∈ L0 (X) is an unbounded function
satisfying σ(u) 6= 0 such that the inequality

st2 − lim sup
k,l

ρ

(
λ

(
AT
klijh

σ

))
≤ Rρ (λh) , uniformly in i, j, (3.1)

holds for every h ∈ XT, λ > 0 and for an absolute positive constant R.
Set f0 (v) ≡ 1 for all v ∈ X, let fr, r = 1, 2, ..., q and ar, r = 0, 1, 2, ..., q, be functions in Cb (X) .

Put

Pu (v) =

q∑
r=0

ar (u) fr (v) , u, v ∈ X, (3.2)

and suppose that Pu (v) , u, v ∈ X, satisfies the following properties:

(P1) Pu (u) = 0, for all u ∈ X,

(P2) for every neighbourhood U ∈ U there is a positive real number η with Pu (v) ≥ η whenever
u, v ∈ X, (u, v) /∈ U (see for examples [4]).

In order to obtain our main theorem, we first give the following result.

Theorem 3.1. Let A =
(
A(i,j)

)
be a sequence of four dimensional infinite non-negative real

matrices and let ρ be a monotone, strongly finite and N−quasi semiconvex modular. Suppose that
fr and ar, r = 0, 1, 2, ..., q, satisfy properties (P1) and (P2) . Let T = (Tmn) be a double sequence
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of positive linear operators from D into L0 (X) and assume that σr (u) is an unbounded function
satisfying |σr (u)| ≥ br > 0 (r = 0, 1, 2, ..., q). If

st2 − lim
k,l
ρ

(
λ0

(
AT
klijfr − fr

σr

))
= 0, uniformly in i, j, (3.3)

for some λ0 > 0, r = 0, 1, 2, ..., q, in Xρ then for every f ∈ Cc (X)

st2 − lim
k,l
ρ

(
γ

(
AT
klijf − f
σ

))
= 0, uniformly in i, j, (3.4)

for some γ > 0, in Xρ where σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., q} . If

st2 − lim
k,l
ρ

(
λ

(
AT
klijfr − fr

σr

))
= 0, uniformly in i, j,

for every λ > 0, r = 0, 1, 2, ..., q, in Xρ then for every f ∈ Cc (X)

st2 − lim
k,l
ρ

(
λ

(
AT
klijf − f
σ

))
= 0, uniformly in i, j,

for every λ > 0, in Xρ where σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., q} .

Proof. We first claim that, for every f ∈ Cc (X) ,

st2 − lim
k,l
ρ

(
γ

(
AT
klijf − f
σ

))
= 0, uniformly in i, j, (3.5)

for some γ > 0. To see this, assume that f ∈ Cc (X) . Then, since X is endowed with the uniformity
U , f is uniformly continuous and bounded on X. By the uniform continuity of f, choose ε ∈ (0, 1] ,
there exists a set U ∈ U such that |f (u)− f (v)| ≤ ε whenever u, v ∈ X, (u, v) ∈ U.

For all u, v ∈ X let Pu (v) be as in (3.2), and η > 0 satisfy condition (P2) . Then for u, v ∈ X,
(u, v) /∈ U, we have |f (u)− f (v)| ≤ 2M

η Pu (v) where M := sup
v∈X
|f (v)| . Therefore, in any case we

get |f (u)− f (v)| ≤ ε+ 2M
η Pu (v) for all u, v ∈ X, namely,

−ε− 2M

η
Pu (v) ≤ f (u)− f (v) ≤ ε+

2M

η
Pu (v) . (3.6)

Since Tmn is linear and positive, by applying Tmn to (3.6) for every m,n ∈ N we have

−εAT
klij (f0;u)− 2M

η
AT
klij (Pu;u) ≤ f (u)AT

klij (f0;u)−AT
klij (f ;u)

≤ εAT
klij (f0;u) +

2M

η
AT
klij (Pu;u) .
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Hence ∣∣AT
klij (f ;u)− f (u)

∣∣ ≤ ∣∣AT
klij (f ;u)− f (u)AT

klij (f0;u)
∣∣

+ |f (u)|
∣∣AT

klij (f0;u)− f0 (u)
∣∣

≤ εAT
klij (f0;u) +

2M

η
AT
klij (Pu;u) +M

∣∣AT
klij (f0;u)− f0 (u)

∣∣
≤ ε+ (ε+M)

∣∣AT
klij (f0;u)− f0 (u)

∣∣
+

2M

η

q∑
r=0

ar (u)
∣∣AT

klij (fr;u)− fr (u)
∣∣ .

Let γ > 0. Now for each r = 0, 1, 2, ..., q and u ∈ X, choose M0 > 0 such that |ar (u)| ≤ M0 and
multiplying the both sides of the above inequality by 1

|σ(u)| , the last inequality gives that

γ

∣∣∣∣∣AT
klij (f ;u)− f (u)

σ (u)

∣∣∣∣∣ ≤ γε

|σ (u)|
+Kγ

q∑
r=0

∣∣∣∣∣AT
klij (fr;u)− fr (u)

σ (u)

∣∣∣∣∣
where K := ε + M + 2M

η M0. Now, applying the modular ρ to both sides of the above inequality,

since ρ is monotone and σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., q} , we get

ρ

(
γ

(
AT
klijf − f
σ

))
≤ ρ

(
γε

|σ|
+Kγ

q∑
r=0

AT
klijfr − fr

σr

)
.

Thus, we can see that

ρ

(
γ

(
AT
klijf − f
σ

))
≤ ρ

(
(q + 2) γε

σ

)
+

q∑
r=0

ρ

(
(q + 2)Kγ

(
AT
klijfr − fr

σr

))
.

Since ρ is N−quasi semiconvex and strongly finite, we have,

ρ

(
γ

(
AT
klijf − f
σ

))
≤ Nερ

(
(q + 2) γN

σ

)
+

q∑
r=0

ρ

(
(q + 2)Kγ

(
AT
klijfr − fr

σr

))
. (3.7)

For a given ε∗ > 0, choose an ε ∈ (0, 1] such that Nερ
(

(q+2)γN
σ

)
< ε∗. Now define the following

sets:

Sγ : =

{
(k, l) : ρ

(
γ

(
AT
klijf − f
σ

)
)

)
≥ ε∗

}

Sγ,r : =

(k, l) : ρ

(
(q + 2)Kγ

(
AT
klijfr − fr

σr

))
≥
ε∗ −Nερ

(
(q+2)γN

σ

)
q + 1

 ,

where r = 0, 1, 2, ..., q. Then, it is easy to see that Sγ ⊆
q⋃
r=0

Sγ,r. Hence, we have

δ2 (Sγ) ≤
q∑
r=0

δ2 (Sγ,r) .
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Using the hypothesis (3.3), we get
δ2 (Sγ) = 0,

which proves our claim (3.5).
The last part of theorem can be proved similarly to the first one.

Now, we can give our main theorem of this paper.

Theorem 3.2. Let A =
(
A(i,j)

)
be a sequence of four dimensional infinite non-negative real

matrices and let ρ be a monotone, strongly finite, absolutely continuous and N−quasi semiconvex
modular. Suppose that fr and ar, r = 0, 1, 2, ..., q, satisfy properties (P1) and (P2) . Let T = (Tmn)
be a double sequence of positive linear operators satisfying (3.1) and assume that σr (u) is an
unbounded function satisfying |σr (u)| ≥ br > 0 (r = 0, 1, 2, ..., q). If

st2 − lim
k,l
ρ

(
λ

(
AT
klijfr − fr

σr

))
= 0, uniformly in i, j,

for every λ > 0, r = 0, 1, 2, ..., q, in Xρ, then for every f ∈ D ∩Xρ with f − Cb (X) ⊂ XT,

st2 − lim
k,l

ρ

(
λ0

(
AT
klijf − f
σ

))
= 0, uniformly in i, j,

for some λ0 > 0, in Xρ where σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., q} and D, XT are as before.

Proof. Let f ∈ D ∩Xρ with f −Cb (X) ⊂ XT. It is known from [6, 22] that there exists a sequence
(gkl) ⊂ Cc (X) such that ρ (3λ∗0f) < ∞ and P − lim

k,l
ρ (3λ∗0 (gkl − f)) = 0 for some λ∗0 > 0. This

means that, for every ε > 0, there is a positive number l0 = l0 (ε) with

ρ (3λ∗0 (gkl − f)) < ε for every k, l ≥ l0. (3.8)

For all m,n ∈ N, by linearity and positivity of the operators Tmn, we have

λ∗0
∣∣AT

klij (f ;u)− f (u)
∣∣

≤ λ∗0
∣∣AT

klij (f − gl0l0 ;u)
∣∣+ λ∗0

∣∣AT
klij (gl0l0 ;u)− gl0l0 (u)

∣∣
+λ∗0 |gl0l0 (u)− f (u)|

holds for every u ∈ X. Now, applying modular ρ in the last inequality and using the monotonicity
of ρ and moreover multiplying the both sides of the above inequality by 1

|σ(u)| , we get

ρ

(
λ∗0

(
AT
klijf − f
σ

))

≤ ρ

(
3λ∗0

(
AT
klij (f − gl0l0)

σ

))
+ ρ

(
3λ∗0

(
AT
klijgl0l0 − gl0l0

σ

))

+ρ

(
3λ∗0

(
gl0l0 − f

σ

))
.
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Hence, observing |σ| ≥ b > 0, (b = max {br : r = 0, 1, 2, ..., q}), we can write that

ρ

(
λ∗0

(
AT
klijf − f
σ

))

≤ ρ

(
3λ∗0

(
AT
klij (f − gl0l0)

σ

))
+ ρ

(
3λ∗0

(
AT
klijgl0,l0 − gl0l0

σ

))

+ρ

(
3λ∗0
b

(gl0l0 − f)

)
. (3.9)

Then using the (3.8) in (3.9), we have

ρ

(
λ∗0

(
AT
klijf − f
σ

))
≤ ε+ ρ

(
3λ∗0

(
AT
klij (f − gl0l0)

σ

))

+ρ

(
3λ∗0

(
AT
klijgl0l0 − gl0l0

σ

))
.

By property (3.1) and also using the facts that gl0l0 ∈ Cc (G) and f − gl0l0 ∈ XT, we obtain

st2 − lim sup
k,l

ρ

(
λ∗0

(
AT
klijf − f
σ

))

≤ ε+Rρ (3λ∗0 (f − gl0l0)) + st2 − lim sup
k,l

ρ

(
3λ∗0

(
AT
klijgl0l0 − gl0l0

σ

))

≤ ε (1 +R) + st2 − lim sup
k,l

ρ

(
3λ∗0

(
AT
klijgl0l0 − gl0l0

σ

))

also, resulting from previous theorem,

0 = st2 − lim
k,l
ρ

(
3λ∗0

(
AT
klijgl0l0 − gl0l0

σ

))

= st2 − lim sup
k,l

ρ

(
3λ∗0

(
AT
klijgl0l0 − gl0l0

σ

))

which gives

0 ≤ st2 − lim sup
k,l

ρ

(
λ∗0

(
AT
klijf − f
σ

))
≤ ε (1 +R) .

From arbitrariness of ε > 0, it follows that

st2 − lim sup
k,l

ρ

(
λ∗0

(
AT
klijf − f
σ

))
= 0.
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Furthermore,

st2 − lim
k,l
ρ

(
λ∗0

(
AT
klijf − f
σ

))
= 0,

this completes the proof.

Remark 3.3. Note that, in Theorem 3.2, in general it is not possible to obtain statistical relative
strong convergence unless the modular ρ satisfies the ∆2−condition.

If one replaces the scale function by a nonzero constant, then the condition (3.1) reduces to

st2 − lim sup
k,l

ρ
(
λ
(
AT
klijh

))
≤ Rρ (λh) , uniformly in i, j, (3.10)

for every h ∈ XT, λ > 0 and for an absolute positive constant R. In this case, the next result
immediately follows from our Theorem 3.2.

Corollary 3.4. Let A =
(
A(i,j)

)
be a sequence of four dimensional infinite non-negative real

matrices and let ρ be a monotone, strongly finite, absolutely continuous and N−quasi semiconvex
modular. Suppose that fr and ar, r = 0, 1, 2, ..., q, satisfy properties (P1) and (P2) . Let T = (Tmn)

be a double sequence of positive linear operators satisfying (3.10). If
(
AT
klijfr

)
is statistically

strongly convergent to fr, r = 0, 1, 2, ..., q, , uniformly in i, j, in Xρ, then
(
AT
klijf

)
is statistically

modularly convergent to f , uniformly in i, j, in Xρ such that f is any function belonging to D∩Xρ

with f − Cb (X) ⊂ XT.

If one replaces the matrices A(i,j) by the identity matrix and take the scale function as a non-zero
constant, then the condition (3.1) reduces to

st2 − lim sup
k,l

ρ (λ (Tklh)) ≤ Rρ (λh) (3.11)

for every h ∈ XT, λ > 0 and for an absolute positive constant R. In this case, the following result
immediately follows from our Theorem 3.2.

Corollary 3.5. Let ρ be a monotone, strongly finite, absolutely continuous and N−quasi semicon-
vex modular. Suppose that fr and ar, r = 0, 1, 2, ..., q, satisfy properties (P1) and (P2) . Let T =
(Tmn) be a double sequence of positive linear operators satisfying (3.11) and assume that σr (u) is an
unbounded function satisfying |σr (u)| ≥ br > 0 (r = 0, 1, 2, ..., q). If (Tmnfr) is statistically strongly
convergent to fr to the scale function σr, r = 0, 1, 2, ..., q, in Xρ then (Tmnf) is statistically mod-
ularly convergent to f to the scale function σ in Xρ where σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., q}
and f is any function belonging to D ∩Xρ with f − Cb (X) ⊂ XT.

4 Application

Now, we give an application showing that in general, our results are stronger than classical ones.

Example 4.1. Let us consider X = [0, 1]
2

= [0, 1] × [0, 1] ⊂ R2 and let ϕ : [0,∞) → [0,∞) is a
continuous function with ϕ is convex, ϕ (0) = 0, ϕ (x) > 0 for any x > 0 and limx→∞ ϕ (x) =∞.
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Then, the functional ρϕ defined by

ρϕ(f) :=

1∫
0

1∫
0

ϕ (|f (x, y)|) dxdy for f ∈ L0 (X) ,

is a convex modular on L0 (X) and

Xρϕ :=
{
f ∈ L0 (X) : ρϕ (λf) < +∞ for some λ > 0

}
is the Orlicz space generated by ϕ.

For every (x, y) ∈ X, let f0 (x, y) = a3 (x, y) = 1, f1 (x, y) = x, f2 (x, y) = y, f3 (x, y) =
a0 (x, y) = x2 + y2, a1 (x, y) = −2x, a2 (x, y) = −2y. For every m,n ∈ N, u1, u2 ∈ [0, 1] , let
Kmn (u1, u2) = (m+ 1) (n+ 1)um1 u

n
2 and for f ∈ C (X) and (x, y) ∈ X, set

Mmn (f ;x, y) =

1∫
0

1∫
0

Kmn (u1, u2) f (u1x, u2y) du1du2.

Then we get

1∫
0

1∫
0

Kmn (u1, u2) du1du2

= (m+ 1)

 1∫
0

um1 du1

 (n+ 1)

 1∫
0

un2du2

 = 1,

and hence, Mmn (f0;x, y) = f0 (x, y) = 1. Also, we know from [3] that

|Mmn (f1;x, y)− f1 (x, y)| ≤ 1

m+ 2
, |Mmn (f2;x, y)− f2 (x, y)| ≤ 1

n+ 2
,∣∣Mmn

(
f21 ;x, y

)
− f21 (x, y)

∣∣ ≤ 2

m+ 3
,
∣∣Mmn

(
f22 ;x, y

)
− f22 (x, y)

∣∣ ≤ 2

n+ 3
,

and for each m,n ≥ 2, f ∈ Xρϕ we get ρϕ(Mmnf) ≤ 32ρϕ(f). Moreover, (Mmn) satisfies the
condition (14) in [29] with XM = Xρϕ and (Mmnf) is modulary convergent to f ∈ Xρϕ . Using the
operators M = (Mmn) , we define the double sequence of positive linear operators L = (Lmn) on
Xρϕ as follows:

Lmn (f ;x, y) = (1 + gmn (x, y))Mmn (f ;x, y) , for f ∈ Xρϕ ,

x, y ∈ [0, 1] and m,n ∈ N, where gmn : X → R defined by

gmn (x, y)

=


1, m = s2 and n = t2

mn (1−mnxy) , (x, y) ∈
(
0, 1

m

)
×
(
0, 1

n

)
;m 6= s2 and n 6= t2

0, (x, y) /∈
(
0, 1

m

)
×
(
0, 1

n

)
; m 6= s2 and n 6= t2
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s, t = 1, 2, ... If ϕ (x) = xp for 1 ≤ p < ∞, x ≥ 0 then Xρϕ = Lp(X) and we have for any function
f ∈ Xρϕ , ρ

ϕ(f) = ‖f‖pp . Choose p = 1.
It is clear that

ρ (λ0 (gmn − g)) = ‖λ0 (gmn − g)‖1

= λ0


1, m = s2 and n = t2
3
4 , (x, y) ∈

(
0, 1

m

)
×
(
0, 1

n

)
;m 6= s2 and n 6= t2

0, (x, y) /∈
(
0, 1

m

)
×
(
0, 1

n

)
; m 6= s2 and n 6= t2

,

s, t = 1, 2, ..., where g = 0, then (gmn) does not converge statistically modularly to g = 0. Now,

we choose σr (x, y) = σ (x, y) (r = 0, 1, 2, 3) where σ (x, y) =

{ 1
xy , (x, y) ∈ (0, 1]× (0, 1]

1, otherwise
on

L1 (X) . Then, we get

ρ

(
λ0

(
gmn − g

σ

))
=

∥∥∥∥λ0(gmn − gσ

)∥∥∥∥
1

= λ0


1, m = s2 and n = t2

5
36mn , (x, y) ∈

(
0, 1

m

)
×
(
0, 1

n

)
;m 6= s2 and n 6= t2

0, (x, y) /∈
(
0, 1

m

)
×
(
0, 1

n

)
; m 6= s2 and n 6= t2

,

and (gmn) converges statistically modularly to g = 0 to the scale function σ. Also, assume that

A :=
(
A(i,j)

)
=
(
a
(i,j)
klmn

)
is a sequence of four dimensional infinite matrices defined by a

(i,j)
klmn = 1

kl

if i ≤ m ≤ i + k − 1, j ≤ n ≤ j + l − 1, (i, j = 1, 2, ...) and a
(i,j)
klmn = 0 otherwise. In this case

A−summability method reduces to almost convergence of double sequences introduced by Moricz
and Rhoades [25]. Then, it can be seen that, for every L1 (X) , λ > 0 and for positive constant R0

that

st2 − lim sup
k,l

∥∥∥∥∥λ
(
AL
klijh

σ

)∥∥∥∥∥
1

≤ R0 ‖λh‖1 , uniformly in i, j.

Now, observe that

Lmn (f0;x, y)− f0 (x, y) = gmn (x, y) ,

Lmn (f1;x, y)− f1 (x, y) ≤ 1 + gmn (x, y)

m+ 2
+ gmn (x, y) ,

Lmn (f2;x, y)− f2 (x, y) ≤ 1 + gmn (x, y)

n+ 2
+ gmn (x, y) ,

Lmn (f3;x, y)− f3 (x, y) ≤ (1 + gmn (x, y))

(
2

m+ 3
+

2

n+ 3

)
+ 2gmn (x, y) .
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Hence, we can see, for any λ > 0, that∥∥∥∥∥λ
(
AL
klijf0 − f0

σ

)∥∥∥∥∥
1

=

∥∥∥∥∥∥λσ
 1

kl

i+k−1∑
m=i

j+l−1∑
n=j

(1 + gmn)− 1

∥∥∥∥∥∥
1

≤ 1

kl

i+k−1∑
m=i

j+l−1∑
n=j

∥∥∥λgmn
σ

∥∥∥
1

= λ


1, m = s2 and n = t2

1
kl

i+k−1∑
m=i

j+l−1∑
n=j

5
36mn , (x, y) ∈

(
0, 1

m

)
×
(
0, 1

n

)
;m 6= s2 and n 6= t2

0, (x, y) /∈
(
0, 1

m

)
×
(
0, 1

n

)
; m 6= s2 and n 6= t2

, (4.1)

s, t = 1, 2, ..., Since P − lim
k,l

(
sup
i,j

1
kl

i+k−1∑
m=i

j+l−1∑
n=j

5
36mn

)
= 0, then we can easily see that

st2 − lim
k,l

∥∥∥∥∥λ
(
AL
klijf0 − f0

σ

)∥∥∥∥∥
1

= 0, uniformly in i, j.

Also, we have ∥∥∥∥∥λ
(
AL
klijf1 − f1

σ

)∥∥∥∥∥
1

≤

∥∥∥∥∥∥λσ
i+k−1∑
m=i

j+l−1∑
n=j

1

kl

(
1 + gmn
m+ 2

+ gmn

)∥∥∥∥∥∥
1

≤ λ

4

 1

kl

i+k−1∑
m=i

j+l−1∑
n=j

1

m+ 2


+

2

kl

i+k−1∑
m=i

j+l−1∑
n=j

∥∥∥λgmn
σ

∥∥∥
1
.

Since st2 − lim
k,l

(
sup
i,j

1
kl

i+k−1∑
m=i

j+l−1∑
n=j

1
m+2

)
= 0 and from the inequality (4.1), we have

st2 − lim
k,l

∥∥∥∥∥λ
(
AL
klijf1 − f1

σ

)∥∥∥∥∥
1

= 0, uniformly in i, j.

Similarly, we get

st2 − lim
k,l

∥∥∥∥∥λ
(
AL
klijf2 − f2

σ

)∥∥∥∥∥
1

= 0, uniformly in i, j.
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Finally, since ∥∥∥∥∥λ
(
AL
klijf3 − f3

σ

)∥∥∥∥∥
1

≤

∥∥∥∥∥∥λσ
i+k−1∑
m=i

j+l−1∑
n=j

1

kl

(
(1 + gmn (x, y))

(
2

m+ 3
+

2

n+ 3

)
+ 2gmn (x, y)

)∥∥∥∥∥∥
1

≤ λ

4

 1

kl

i+k−1∑
m=i

j+l−1∑
n=j

(
2

m+ 3
+

2

n+ 3

)+
4

kl

i+k−1∑
m=i

j+l−1∑
n=j

∥∥∥λ(gmn
σ

)∥∥∥
1
.

Hence we can easily see that

st2 − lim
k,l

∥∥∥∥∥λ
(
AL
klijf3 − f3

σ

)∥∥∥∥∥
1

= 0, uniformly in i, j.

So, our new operator L = (Lmn) satisfies all conditions of Theorem 3.2 and therefore we obtain

st2 − lim
k,l

∥∥∥∥∥λ0
(
AL
klijf − f
σ

)∥∥∥∥∥
1

= 0, uniformly in i, j.

for some λ0 > 0, for any f ∈ L1 (X) . However, (Lmnf0) is neither statistically A−summable nor
statistically modularly convergent to f0. Thus (Lmn) does not fulfil the Corollary 3.4 and Corollary
3.5.

5 An extension to non-positive linear operators

In this section, we relax the positivity condition of linear operators in the Korovkin theorems. In
[2, 3, 4] there are some positive answers. Following this approach, we give some positive answers
also for statistical relative A−Summation process in modular spaces and prove a Korovkin type
approximation theorem.

Let G be a bounded interval of R2, C2 (G) (resp. C2
b (G)) be the space of all functions defined

on G, (resp. bounded and) continuous together with their first and second derivatives, C+ :={
f ∈ C2

b (G) : f ≥ 0
}
, C2

+ :=
{
f ∈ C2

b (G) : f ′′ ≥ 0
}
.

Let fr, r = 1, 2, ..., q, and ar, r = 0, 1, 2, ..., q, be functions in C2
b (G) , Pu (v) , u, v ∈ G, be as in

(3.2), and suppose that Pu (v) satisfies the properties (P1) , (P2) and

(P3) there is a positive real constant S0 such that P ′′u (v) ≥ S0 for all u, v ∈ G (Here the second
derivative is intended with respect to v).

Now we prove the following Korovkin type approximation theorem for not necessarily positive
linear operators.

Theorem 5.1. Let A, ρ and σr be as in Theorem 3.1 and fr, ar, r = 0, 1, 2, ..., q and Pu (v) ,
u, v ∈ G, satisfies the properties (P1) , (P2) and (P3) . Assume that T = (Tmn) be a double
sequence of linear operators and Tmn

(
C+ ∩ C2

+

)
⊂ C+ for all m,n ∈ N. If AT

klijfr is statistically
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relatively modularly convergent to fr to the scale function σr in Xρ for each r = 0, 1, 2, ..., q, then
AT
klijf is statistically relatively modularly convergent to f to the scale function σ in Xρ for every

f ∈ C2
b (G) where σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., q} .

If AT
klijfr is statistically relatively strongly convergent to fr to the scale function σr, r =

0, 1, 2, ..., q, in Xρ then AT
klijf is statistically relatively strongly convergent to f to the scale function

σ in Xρ for every f ∈ C2
b (G) where σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., q} .

Furthermore, if ρ is absolutely continuous, T satisfies the property (3.1) and AT
klijfr is statis-

tically relatively strongly convergent to fr to the scale function σr, r = 0, 1, 2, ..., q, in Xρ then
AT
klijf is statistically relatively modularly convergent to f to the scale function σ in Xρ for every

f ∈ D ∩Xρ with f − Cb (G) ⊂ XT where σ (u) = max {|σr (u)| : r = 0, 1, 2, ..., q} .

Proof. Let f ∈ C2
b (G) . Since f is uniformly continuous and bounded on G, given ε > 0 with

0 < ε ≤ 1, there exists a δ > 0 such that |f (u)− f (v)| ≤ ε for all u, v ∈ G, |u− v| ≤ δ. Let Pu (v) ,
u, v ∈ G, be as in (3.2) and let η > 0 be associated with δ, satisfying (P2) . As in Theorem 3.1, for
every β ≥ 1 and u, v ∈ G, we have

−ε− 2Mβ

η
Pu (v) ≤ f (u)− f (v) ≤ ε+

2Mβ

η
Pu (v) (5.1)

where M = sup
v∈G
|f (v)| . From (5.1) it follows that

h1,β (v) := ε+
2Mβ

η
Pu (v) + f (v)− f (u) ≥ 0, (5.2)

h2,β (v) := ε+
2Mβ

η
Pu (v)− f (v) + f (u) ≥ 0. (5.3)

Let H0 satisfy (P3) . For each v ∈ G, we get

h′′1,β (v) ≥ 2MβH0

η
+ f ′′ (v) , h′′2,β (v) ≥ 2MβH0

η
− f ′′ (v) .

Because of f ′′ is bounded on G, we can choose β ≥ 1 in such a way that h′′1,β (v) ≥ 0, h′′2,β (v) ≥ 0

for each v ∈ G. Hence h1,β , h2,β ∈ C+ ∩ C2
+ and then, by hypothesis

AT
klij (hj,β ;u) ≥ 0 for all m,n ∈ N, u ∈ G and j = 1, 2. (5.4)

From (5.2)-(5.4) and the linearity of Tmn, we get

εAT
klij (f0;u) +

2Mβ

η
AT
klij (Pu;u) +AT

klij (f ;u)− f (u)AT
klij (f0;u) ≥ 0,

εAT
klij (f0;u) +

2Mβ

η
AT
klij (Pu;u)−AT

klij (f ;u) + f (u)AT
klij (f0;u) ≥ 0,

thus,

−εAT
klij (f0;u)− 2Mβ

η
AT
klij (Pu;u) ≤ f (u)AT

klij (f0;u)−AT
klij (f ;u)

≤ εAT
klij (f0;u) +

2Mβ

η
AT
klij (Pu;u) .
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By arguing similarly as in the proof of Theorem 3.1, multiplying the inequality by 1
|σ(u)| , using the

modular ρ and for k, l ∈ N, we have the assertion of the first part.
The other parts can be proved similarly as in the proofs of Theorem 3.1 and Theorem 3.2.
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